Original Full Length Article

Mechanical Stretch Induced Calcium Efflux from Bone Matrix Stimulates Osteoblasts

Xuanhao Sun, Eric McLamore, Vipuil Kishore, Kateri Fites, Mikhail Slipchenko, D. Marshall Porterfield, Ozan Akkus

A R T I C L E I N F O

Article history:
Received 11 August 2011
Revised 1 December 2011
Accepted 19 December 2011
Available online 29 December 2011

Edited by: David Burr

Keywords:
Calcium efflux
Bone matrix
Damage targeting
Mechanochemical transducer
Intracellular calcium
Osteoblast

A B S T R A C T

The mechanisms by which bone cells sense critically loaded regions of bone are still a matter of ongoing debate. Animal models to investigate response to microdamage involve post mortem immunohistological analysis and do not allow real-time monitoring of cellular response during the emergence of the damage in bone. Most in vitro mechanical stimulation studies are conducted on non-bone substrates, neglecting the damage-related alterations in the pericellular niche and their potential effects on bone cells. The current study reports spontaneous efflux of calcium ions (Ca^{2+}) (1.924 ± 0.742 pmol cm^{-2} s^{-1}) from regions of devitalized bone matrix undergoing post-yield strains, induced by a stress concentrator. When these samples are seeded with MC3T3-E1 osteoblasts, the strain-induced Ca^{2+} efflux from bone elicits cell response at the stress concentration site as manifested by activation of intracellular calcium signaling (increase in fluorescence by 52% ± 27%). This activity is associated with extracellular calcium because the intracellular calcium signaling in response to mechanical loading subsides when experiments are repeated using demineralized bone substrates (increase in fluorescence by 6% ± 10%). These results imply a novel perspective where bone matrix acts as an intermediary mechanochemical transducer by converting mechanical strain into a chemical signal (pericellular calcium) to which cells respond. Such a mechanism may be responsible for triggering repair at locations of bone matrix undergoing critical deformation levels.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Bone sustains microfractures physiologically due to fatigue and supraphysiologically due to overload episodes [1–3]. Cell-mediated repair of bone is preferentially associated with such critically loaded regions of bone, suggesting that bone cells can target damage for repair [4]. Response of bone cells to damage are mostly studied by animal models [5,6] which usually involve post hoc immunohistological analysis but do not allow real-time monitoring of cellular response during the emergence of the damage in bone. To this date, there are no in vitro damage models which allow studying bone cells in response to damage formation within bone matrix. Most studies on stimulation of bone cells are conducted on non-bone synthetic substrates; therefore, if alterations in the pericellular physiochemical environment are stimulant to bone cells, such effects have not been investigated. There has been little focus on indirect pathways where in mechanical loading may come to affect bone cells’ response by altering the chemistry of their pericellular niche in bone matrix.

Slide between collagen fibrils [7], disruption of sacrificial ionic bonds [8], and intergranular friction [9] have been proposed to occur at the nanoscale of bone upon loading. A recently developed experimental model in our laboratory introduces notches (i.e. stress raisers) to bone slices to amplify mechanical stress controllably in a site-specific fashion which allows for real-time observation of the evolving damage in vitro [10]. Upon the emergence of a damage zone in this model, we observe a mechanically-induced exposure of nanostructural features of the same length scale with mineral crystals of bone and of positive charges similar to the calcium moieties in bone during post-yield deformation [10,11]. Based on this hindsight we hypothesize that mechanical strain induces an efflux of calcium ions (Ca^{2+}) from bone matrix to the pericellular space. If exists, such an efflux would not be one without any consequences because it has been well documented that changes in the concentration of extracellular Ca^{2+} ([Ca^{2+}]) regulates a wide range of biological activities, such as secretion [12], muscle contraction [13] and...
neurotransmission [14]. There is also evidence that increased levels of Ca^{2+} stimulate osteoblasts [15,16] and osteocytes [17,18]. Based on the documented responsiveness of bone cells to Ca^{2+}, we hypothesized further that mechanically-induced calcium efflux from bone matrix is stimulant to bone cells.

The first hypothesis was tested by measuring the Ca^{2+} efflux from devitalized bone surface in real-time during mechanical loading. After the confirmation of a significant level of Ca^{2+} efflux from bone at critically-strained regions, we investigated the response of mouse calvarial osteoblasts (MC3T3-E1) seeded on bone substrates subjected to loading, and the change in intracellular Ca^{2+} concentration ([Ca^{2+}]) was monitored in real-time by using intracellular calcium indicators. Demineralized bone samples were used as a negative control to assess cellular response to substrate stretch alone without the Ca^{2+} efflux. Furthermore, to completely decouple the potential effects of Ca^{2+} efflux and substrate strain on activating bone cells, MC3T3-E1 cells were seeded onto porous substrates and subjected to the Ca^{2+} efflux from apical and basal (i.e. substrate) aspects.

2. Materials and Methods

2.1. Bone sample preparation

Block beams from bovine femurs were prepared using a low-speed diamond blade saw (Buehler Ltd., Lake Bluff, IL) (Fig. 1A). A V-notch (notch root radius -100 μm), extending half the depth of the remaining cortical thickness was introduced through the center of the beam using a mill (Series 5400, Sherline, Vista, CA). Block beams were sectioned into thin wafers (0.2 mm), and polished with progressively finer grades of 600, 800, and 1200 grade polishing paper (Buehler Ltd., Lake Bluff IL) and fine alumina powder (0.3 μm). Sonicator (Model FS20, Fisher Scientific, Waltham, MA) was used to remove the polishing debris between each polishing step (2 minutes for each sonification period). The final dimensions of the notched wafer were approximately 50 × 4 × 0.2 mm. A final sonication stage was performed to remove any remaining polishing and cellular debris from the devitalized bone surface. Polished wafers are stored in a −20 °C freezer upon using.

2.2. Tensile test of devitalized bone under light microscope in the absence of cells

Samples were loaded at a rate of 6 μm/s using a miniaturized tensile test device (Ernest F. Fullam Inc, Troy, NY, USA) which was fixed on the stage of a light microscope (BX51, Olympus America) (Figs. 1B, C). This microscope setting allowed both transmission and reflection images to be taken during the loading process (Fig. 1D). A UV epifluorescent light source was used when imaging the fluorescent indicators. During the entire tensile test, strips of Kimwipe were draped over the samples. These strips kept the bone partially wet by wicking in water from the reservoir below the specimen. The overall humidity in the region of testing was maintained around 60% by a humidifier.

2.3. Calcium indicator staining for visual confirmation of ionized calcium exposure

Calcium indicator, Fluo-4FF (F23980, Invitrogen) was used to confirm calcium exposure during damage evolution. Samples were pre-soaked with calcium indicator for 15 minutes, and then loaded until the emergence of the opaque process zone at the notch root (about 0.2-0.5% (with an average of 0.3%) tissue level strain or 20 newtons in loading, for the given sample geometry), and held at the loaded state for 15 more minutes to provide time for stain penetration and interaction with calcium ions. Sample was unloaded and calcium indicator solution on the bone surface was blown away by duster air before UV epifluorescent images were taken. Three specimens were tested to confirm the repeatability of the reported results.

2.4. SHG image and fluorescent image of process zone

Second harmonic generation (SHG) images of mineralized collagen fibers were obtained and overlaid with two-photon excited fluorescence (TPEF) images of the damage stained by a negatively charged dye, Dextran AlexaFluor488, which we have shown to label the damage in the process zone earlier [10]. SHG and TPEF images were acquired using an inverted confocal microscope (FV1000 + IX81, Olympus America Inc, PA) equipped with a mode-locked femtosecond Ti: Sapphire laser (Mai Tai, Spectra-Physics, Fremont, CA). The

Fig. 1. Sample preparation and experimental setup. (A) Schema of wafer specimen preparation. (B) Samples were loaded using a miniaturized tensile test device which was fixed on the stage of a light microscope. (C) The device loads the sample symmetrically, maintaining the point of interest in the field of view during loading. White arrow points at bone specimen. (D) The schema represents the reflection fluorescence illumination light pathway (blue arrow) and the transmission illumination light pathway (green arrow).
average excitation power at the sample was approximately 30 mW with an excitation wavelength of 840 nm. A 60x water immersion objective (1-U2B893IR, 1.2 numerical aperture, Olympus) was used to focus laser beam into the specimen. The SHG signal was collected by the same objective and directed towards backward external photomultiplier tube (PMT) detector mounted at the side port of the microscope. The dichroic mirror (650dcspxr, Chroma, VT) was used to separate detected SHG signals from the excitation beam. The TPEF signals was collected in the forward direction by air condenser (IX2-LWUCD, 0.55 numerical aperture, Olympus) and directed towards forward external PMT detector (both external PMTs are model R7683 from Hamamatsu Photonics, Japan). The 430/40 and 520/70 bandpass filters (Chroma, VT) were used in front of PMTs to selectively detect SHG and TPEF signals, respectively. Each acquired image (512×512 pixels) covered an area of 120×120 μm² and was integrated over 3 frames to improve signal to noise ratio. SHG image was pseudo-red colored and overlapped with TPEF image in ImageJ.

2.5. Calcium Efflux Measurement by Self-referencing (SR) Calcium Microsensor

Ion-selective microelectrodes (ISE) were used to measure calcium efflux and concentration. ISE were constructed using non-filamented 1.5 mm borosilicate glass capillaries (World Precision Instruments) pulled on a Sutter P-97 horizontal puller (Flaming-Brown, Sutter instrument Co) to obtain a shank of about 4.0 mm and a tip diameter of approximately 2–5 μm. ISE utilized an immobilized liquid exchange membrane and an Ag/AgCl reference electrode. Immediately prior to use, microelectrodes were backfilled with electrolyte and then front filled with ion exchange cocktail (Ionophore). Microelectrodes were inserted into a half-cell microelectrode holder fitted with an electro-

ically plated Ag/AgCl wire. The return pathway (reference probe) for the circuit was 3 M KCl immobilized in 3% agar injected into 1.5 mm polyethylene tubing inserted in a microelectrode holder half cell (World Precision Instruments). SR hardware included a vibration isolation table with Faraday cage (Technical Manufacturing Co), camera/zoomscope and sensor mounted on a head stage controlled by a motion control system. Automated Scanning Electrode Technique (ASET) software was used for data acquisition and control functions (Science Wares) (Fig. 2A).

The SR technique compensates for the errors introduced by ambient drift and noise by oscillating between two locations (termed near pole and far pole) at a fixed excursion distance (50 μm). The differential concentration (∆[Ca²⁺]) had approximately linear dependence (R² = 0.98) on excursion distance (∆x) for small ∆x, enabling calculation of flux using Fick’s first law of diffusion (the molecular diffusion coefficient D = 4.5×10⁻⁵ cm² sec⁻¹) [19]. The values of [Ca²⁺], and...
where \(J \) is the \(\text{Ca}^{2+} \) flux (nmol cm\(^{-2}\) s\(^{-1}\)), \(\Delta x \) the excursion distance between near/far pole (50 \(\mu \)m) (Fig. 2B).

The miniaturized tensile test device was mounted on the stage of the microsensor system. The microelectrode was positioned above the bone surface within 5 \(\mu \)m during measurements. Measurement was conducted with bone immersed in 1X PBS (GIBCO). Temporal changes in \(\text{Ca}^{2+} \) concentration and efflux were measured in real-time at the root of the notch in bone before loading, during loading (until the emergence of the opaque process zone at about 20 N), and after the removal of loading (N=5). Experiments were repeated with bone being immersed with CaCl\(_2\) (2 mM) supplemented PBS as well.

2.6. Observations of the Osteoblasts Seeded on Devitalized Bone

To assess whether \(\text{Ca}^{2+} \) efflux from loaded bone is stimulant to bone cells, we seeded the mouse calvarial osteoblastic cells (MC3T3-E1 subclone 4, ATCC) on notched bone samples and repeated the mechanical tests to observe their response. Cells were cultured in \(\alpha \)-MEM (GIBCO) containing 10% FBS (GIBCO), 60 Unit/ml penicillin/streptomycin and 1.5 \(\mu \)g/ml Fungizone and maintained at 37 °C and 5% \(\text{CO}_2 \) in a humidified incubator. Notched bone specimen was prepared in the same way as described before, and sterilized in 70% ETOH overnight. ETOH was rinsed with PBS (GIBCO) and left for drying in the in the laminar hood for 20 min. This was repeated for 3 times to ensure the complete removal of ETOH. MC3T3-E1 cells were seeded on the sterilized bone at a density of 20,000 cells per cm\(^2\) with culture media (i.e. cells covered the entire bone surface).

Demineralized samples (N=4) were used as a negative control (substrate stretch without \(\text{Ca}^{2+} \) efflux). Molten bee’s wax was used to coat grip regions of the bone specimen (the outer one third regions) which masked the grip regions from demineralization. The mid portion of the sample including the notch area was otherwise exposed to ensuing demineralization treatment (about 4 \(\text{mm} \) in length). After bee wax solidified, the bone specimen was immersed in 0.5 M ethylenediaminetetraacetic acid (EDTA, Sigma) for 5 hours with moderate agitation. Demineralization was confirmed by the disappearance of PO\(_4\)\(^{3-}\) peak by Raman spectroscopy and the bee’s wax on the specimen is gently peeled off with the assistance of a razor blade. Specimen sterilization and cell seeding procedure for the demineralized bone was the same as the undemineralized bone afterwards. The cell seeding and attachment onto both undemineralized and demineralized bone was confirmed by Alexa Fluor 488 phalloidin (Invitrogen) for F-actin stain.

Since elevated intracellular \(\text{Ca}^{2+} \) concentration ([\(\text{Ca}^{2+}\)]\(_i\)) has been shown to trigger a wide range of downstream cellular events [20,21] and can be easily monitored in real-time with intracellular calcium indicators, [\(\text{Ca}^{2+}\)]\(_i\) has been widely used as an early signal to study bone cells during mechanotransduction [22,23]. Fluo-4 AM calcium indicator was used to monitor the cellular response in terms of the change in [\(\text{Ca}^{2+}\)]\(_i\). Cells were incubated with 0.5 \(\mu \)M Fluo-4 AM for 90 min before real-time [\(\text{Ca}^{2+}\)]\(_i\) monitoring during mechanical loading. Cell-seeded notched bone specimens were loaded at a rate of 6 \(\mu \)m/s until the emergence of the opaque process zone (0.2%-0.5% (with an average of 0.3%) tissue level strain or about 20 newtons in loading) using the miniaturized tensile stage setup under the microscope (N=4) [10]. The bath medium has 1.8 mM baseline [\(\text{Ca}^{2+}\)]\(_i\) background in \(\alpha \)-MEM + 1%FBS, with no additional \(\text{Ca}^{2+} \) added. Demineralized samples (N=4) were loaded at least twice the strain (1%-6% (with an average of 3.8%) tissue level strain or about 2 newtons in loading) experienced by undemineralized specimen to ensure cells seeded on demineralized bone were subjected to no less substrate deformation than that of the undemineralized samples.

2.7. Activating cells with mimicked calcium efflux in the absence of mechanical loading

Demineralized samples discounts calcium contribution; however, the presence of substrate stretch was present. To completely decouple the potential effects of \(\text{Ca}^{2+} \) efflux and substrate strain on activating bone cells, MC3T3-E1 cells were seeded onto porous substrates (0.4 \(\mu \)m culture plate insert, Corning). To mimic the \(\text{Ca}^{2+} \) efflux from bone (calcium efflux from bone incident on cells from their basal aspect), 1.2 mL media underneath the cell-seeded inserts was replaced with media containing 10X, 100X, or 1000X of baseline CaCl\(_2\) concentration in the \(\alpha \)-MEM media (1X=1.8 mM), while the media above the insert was unaltered. This generated a \(\text{Ca}^{2+} \) gradient across the insert, resulting in \(\text{Ca}^{2+} \) efflux toward the cells, mimicking the \(\text{Ca}^{2+} \) efflux from bone substrate. Therefore, the only stimulus applied to MC3T3-E1 cells was the \(\text{Ca}^{2+} \) efflux from below the substrate (basal side) without any confounding substrate deformation. To compare with the cellular response to the \(\text{Ca}^{2+} \) efflux from the apical side, experiment was repeated with cells seeded directly at the bottom of the culture wells (with 1.8 mM baseline [\(\text{Ca}^{2+}\)]\(_i\) in medium) and CaCl\(_2\) added directly from the above (medium was replaced with 10X, 100X, or 1000X CaCl\(_2\) supplemented medium, 0.75 mL was added to keep the height of the medium above the cells as the same as that in the insert group) (Fig. 3). Both substrates were cell adhesion optimized synthetic polymer surfaces: the porous insert is made from polyester (PET), while the culture well is made from poly-styrene. Cells have adhered to both types of surfaces without any

Fig. 3. Cells seeded on porous insert (Left) to mimic the \(\text{Ca}^{2+} \) efflux from basal substrate aspect, while cells seeded on well (Right) to mimic \(\text{Ca}^{2+} \) flux from the apical aspect of cells.
apparent differences in cytoskeletal morphology compared with cells seeded on bone (confirmed Alexa Fluor 488 phalloidin).

2.8. Activating cells with osmotic pressure with glucose-supplemented media

To investigate the potential role of osmotic pressure from the CaCl₂ supplemented media on activating the osteoblasts, we conducted additional experiments with bath medium supplemented with 540 mM glucose which creates an osmotic pressure equivalent of 180 mM CaCl₂. In this way we provided a similar osmotic pressure in the absence of calcium. Glucose-supplemented media were applied in both osteoblast-seeded bone and culture well the same way as described above in section 2.7. The results were compared with that from the CaCl₂-supplemented media group using an inverted microscope.

2.9. Data recording and analysis

Fluorescence images were recorded at 2 fps by a CMOS (Infinity, Lumenera) on the upright microscope, or 0.2 fps by a CMOS (Q-color 5, Olympus) on the inverted microscope, and analyzed by ImageJ (NIH). For cell-seeded bone loading experiments, four samples each from undemineralized bone or demineralized bone group were tested and ten most discernable cells on each sample were analyzed. Nested-ANOVA was used to compare the peak fluorescence level over pre-loading baseline level between cells seeded on original bone and demineralized bone. Fluorescence was plotted after normalization by pre-load baseline fluorescence level. For cell-seeded insert or well experiments, 10 cells each at different CaCl₂ level on either insert or well were analyzed. Student’s t test was used to compare the peak fluorescence between cells seeded on insert and on well at each applied CaCl₂ level and baseline fluorescence level before CaCl₂ was added. Time-course fluorescence figures were plotted after normalizing their baseline fluorescence to the same level to facilitate comparison between different groups. The significance of the CaCl₂ concentration effect on the cell fluorescence response was tested by ANOVA on the slope of linear regression fit. Experiments with glucose-supplemented media were analyzed the same way as those with CaCl₂-supplemented media. Student’s t test was used to compare the peak fluorescence between glucose-supplemented experiments and CaCl₂-supplemented experiments.

3. Results

3.1. Exposure of calcium-rich moieties of bone during mechanical loading

Upon mechanical loading, elevated fluorescence intensity was observed at the notch root of devitalized bone samples soaked in Fluo-4FF prior to loading. Fluorescent regions overlapped with the damage process zone (manifested by an opacity emerging at notch root [10]) observed using the transmission mode (Figs. 4A, B). This result indicates that the Ca²⁺-rich regions of bone are exposed at the notch root upon mechanical loading. Overlay of collagen fiber orientation obtained by second harmonic generation (SHG) (Fig. 4C) with stain-labeled damage patterns demonstrate both extracellular (generally delamination between fibers) and intracellular (damage traversing fibers obliquely) interactions between collagen fibers and the damage.

3.2. Efflux of Ca²⁺ from bone measured by SR Calcium Microsensor

An immediate elevation of both Ca²⁺ concentration and efflux was observed concomitant with the mechanical loading and the emergence of the opaque zone (N = 5). Efflux levels returned to the baseline level upon the removal of mechanical loading (Fig. 5). The baseline Ca²⁺ efflux before mechanical loading (0.120 ± 0.083 pmol cm⁻² s⁻¹, avg. ± st.d.v.) increased 16-fold (1.924 ± 0.742 pmol cm⁻² s⁻¹) at the emergence of yield zone and dropped back to the preloading level upon unloading (0.561 ± 0.145 pmol cm⁻² s⁻¹) (Fig. 5D). In experiments repeated with 2 mM CaCl₂, no change in efflux or concentration upon mechanical loading was observed (data not shown).

3.3. Activation of bone cells by mechanically-induced calcium efflux from the bone matrix

Staining for the cytoskeleton for F-actin (Alexa Fluor 488 phalloidin) showed that MC3T3-E1 cells attached to both undemineralized bone and demineralized bone, and there were no differences in the cell seeding density or morphology of the cytoskeletons of the attached cells.
Upon mechanical loading of undemineralized bone, MC3T3-E1 cells stained with Fluo-4 AM increased their intracellular calcium fluorescence intensity by about 50% ($F_{\text{increase}}/F_{\text{baseline}}$: 52% ± 27%, $N=40$), while the cells seeded on demineralized bone showed significantly diminished response ($F_{\text{increase}}/F_{\text{baseline}}$: 6% ± 10%, $N=40$) upon loading (Figs. 6C, D).

Fig. 5. Real-time Ca$^{2+}$ measurement at bone surface during mechanical loading. (A) Microelectrode (dashed red line) was above an opaque process zone (arrow) during measurement. (B) Representative Ca$^{2+}$ concentration levels. (C) Representative Ca$^{2+}$ efflux levels. (D) Difference in the Ca$^{2+}$ efflux levels at different loading states (☆ Ca$^{2+}$ efflux level upon mechanical loading is significantly higher than the rest, $p<0.01$).

Fig. 6. Activation of MC3T3-E1 by mechanically-induced calcium efflux from bone. MC3T3-E1 cells' attachment stained with Alexa Fluor 488 phalloidin (F-actin) on undemineralized bone (A) and on demineralized bone (B). (C) Comparison of fluorescence increase in MC3T3-E1 cells seeded on undemineralized bone and demineralized bone upon mechanical loading. (D) Representative curves of temporal change in fluorescence intensity of a single cell seeded on undemineralized bone and on demineralized bone.
3.4. Activation of bone cells by Ca$^{2+}$ efflux: Efflux from the basal vs. apical aspects of the cell

Cell-seeded insert experiments showed that the intracellular Ca$^{2+}$ level in MC3T3-E1 cells increased in response to the mimicked Ca$^{2+}$ efflux in a dose-dependent manner, and the fluorescence intensity was proportional to the logarithm of the [Ca$^{2+}$] added either from underneath the porous substrate (basal group) or from above the cells (apical group) (Fig. 7A). Linear regression of the cellular fluorescence versus log[Ca$^{2+}$] was significant both for the basal group ($R^2 = 0.63$, P-value $< 10^{-7}$) and the apical group ($R^2 = 0.43$, P-value $< 10^{-6}$). Therefore, the extracellular calcium concentration [Ca$^{2+}$] is significantly associated with the activation level of intracellular calcium. Although cells in both groups responded to the extracellular [Ca$^{2+}$] gradient, the mean value of peak fluorescence intensity in the basal group was twice the value of the apical group, and this difference was significant (P < 0.001) on all three levels of applied [Ca$^{2+}$] (Fig. 7A). It was also observed that the baseline fluorescence (before CaCl$_2$ was added) in the cells seeded on the porous inserts was higher than that in the cells seeded on the culture wells (Fig. 7A). In addition, the time needed for activation differed between the two groups: at the 180 mM [Ca$^{2+}$] level, cells subjected to calcium diffusion from the basal aspect responded immediately, while cells stimulated from the apical aspect were not activated until 4 minutes after the extracellular [Ca$^{2+}$] was applied (Fig. 7B). For the 18 mM level, cells in the basal group were activated at around 200 seconds, while cells in the apical group did not respond within the 5 minute recording time (Figs. 7C, D). At the 1800 mM level, cells in both groups were activated immediately upon stimulation (Figs. 7C, D). Oscillations in the cellular fluorescence were also observed at all levels of [Ca$^{2+}$] (Fig. 7E).

3.5. Activating cells with osmotic pressure: glucose- vs. calcium-supplemented media

Upon the application of the supplemented medium in the insert group (basal stimulation from underneath the insert), we observed that the intracellular calcium response in the glucose-supplemented group ($F_{\text{increase}}/F_{\text{baseline}}$: 59% ± 29%, N = 10) was significantly less (p = 0.02) than that of the CaCl$_2$-supplemented group ($F_{\text{increase}}/F_{\text{baseline}}$: 105% ± 47%, N = 10), even though the two media had the same osmotic pressure. For the osteoblast-seeded culture well group, the intracellular calcium fluorescence increase upon stimulation in the glucose-
supplemented group \(\frac{F_{\text{increase}}}{F_{\text{Baseline}}} \) was also significantly less \((p<0.001) \) than that of the CaCl\(_2\)-supplemented group \(\frac{F_{\text{increase}}}{F_{\text{Baseline}}} \).\(70\% \pm 27\%, N=10 \).

4. Discussion

These results are the first to demonstrate that calcium efflux colocalizes with damage creation in bone matrix and osteoblasts seeded on bone substrates may respond to the efflux during \textit{in vitro} mechanical testing by activating intracellular calcium signaling. Such a mechanism, if present \textit{in vivo}, may act as a stimulus to cells to initiate repair cascade when strains are sufficiently large to induce microdamage.

The nature of the damage occurring in this model was characterized in our earlier work which demonstrated that strain uptake at the opaque zone was associated with the creation of positively charged void space in the order of magnitude of tens of nanometers [10,11]. This study confirmed the exposure of ionized calcium by using calcium indicators. Calcium ions are the most abundant source of positive charge in bone and these ions are associated with mineral crystals (intrafibrillar and extrafibrillar) [24] and highly phosphorylated non-collagenous proteins (mainly extrafibrillar) [8]. Current results indicated that Ca\(^{2+}\) efflux originates from damaged sites at both extrafibrillar and intrafibrillar spaces (Fig. 4).

Calcium microelectrode experiments indicate that Ca\(^{2+}\) dissociates from the surface of bone upon mechanical loading in unsupplemented phosphate buffered saline (PBS). Furthermore, the dissociation seems to be a diffusion-driven process, since when PBS was supplemented with 2 mM Ca\(^{2+}\) (the proposed Ca\(^{2+}\) concentration in the interstitial fluid of bone [25]), calcium efflux was diminished. While the lack of cellular response in demineralized bone strongly supports the involvement of calcium efflux, the absence of strain induced efflux at calcium supplemented solutions requires explanation. First, the microelectrode cannot approach the surface of bone closer than 5 microns; therefore, absence of efflux in supplemented solutions at this level does not eliminate the possibility that an efflux is taking place at closer distances (i.e. within 1 micron of bone surface). Second, while damage appears homogenous at the macroscale (Fig. 4A), it appears discretely at the microscale (Fig. 4C) [10], and exact placement of microelectrode on a location undergoing damage is challenging. If we were able to place the electrode more accurately and more closely on individual damage entities as they happen, we may have possibly recorded efflux in the supplemented conditions as well. Since our results indicate that cells respond to calcium efflux more readily at the basal aspect in comparison to apical aspect, methods need to be developed to probe efflux at even closer distances than had been conducted here. The reduction in efflux with calcium supplementation indicates that the Ca\(^{2+}\) efflux is due to the dissolution and diffusion of calcium moieties which are exposed by damage processes. Surface bound bone cells (active and quiescent osteoblasts), are observed to attach tightly on bone matrix [26]. Therefore, there is a sealed compartment between cell membrane and bone matrix which might have a different Ca\(^{2+}\) concentration compared to that of the bulk interstitial fluid concentration. For instance, the space between osteoclast basal cell membrane and bone matrix reach concentrations as high as 40 mM [27]. While our results are suggestive, whether or not the reported matrix damage elevates the calcium concentration in the compartment between the basal aspect of cells and the matrix remains to be determined conclusively.

The concentrations of the extracellular Ca\(^{2+}\) applied in the mimicked Ca\(^{2+}\) efflux experiments (such as 180 mM and 1800 mM), were much higher than physiological level (about 40 mM in osteoclast resorption site [27]). We resorted to such concentrations in order to test if there is a logarithmic relationship between \([\text{Ca}^{2+}]_{\text{intracellular}}\) and the cellular response to because logarithmic relationship implies the involvement of voltage gated channels. Nevertheless, cells treated with highest \([\text{Ca}^{2+}]_{\text{interstitial}}\) in this study (1800 mM) still displayed “intracellular calcium oscillations” (Fig. 7E), which indicated that cells were viable under such supraphysiological Ca\(^{2+}\) level during the lifetime of the experiment (-5 minutes).

Local calcium concentration changes at observed Ca\(^{2+}\) efflux rates can be approximated by assuming 1-D diffusion from a semi-infinite plate. Assuming the height of the compartment between the cells and the bone surface to be in the 20 nm range [28] and the Ca\(^{2+}\) efflux as 2 pmol cm\(^{-2}\) s\(^{-1}\) based on our experimental measurements, the observed efflux of calcium from bone can increase the concentration in that volume at a speed of 1 mM per second. Such steep increases in extracellular Ca\(^{2+}\) concentration has been shown by various studies to activate various bone cells [15,29,30]. Furthermore, in the calculation of the Ca\(^{2+}\) efflux from bone, we assumed 1-D diffusion from a semi-infinite plate, while the calcium indicator experiment suggested that the source of Ca\(^{2+}\) diffusion is more locally confined (Fig. 4B), and therefore, the Ca\(^{2+}\) efflux value is conservatively estimated here. In addition, although an ultrafine electrode was used to measure the Ca\(^{2+}\) concentration and efflux at the bone surface, the actual Ca\(^{2+}\) concentration which the seeded osteoblasts experienced is still unclear due to the fact cell attachment can get much closer to the bone surface than the electrode (20 nm vs. 5 micron) [28].

A potential source of calcium efflux is dissociation of Ca\(^{2+}\) from the exposed mineral crystals when the organic phase is debonded from the mineral phase under mechanical loading [7]. Such exposure of crystal would increase dissolution. Pure hydroxyapatite crystals have an equilibrium [Ca\(^{2+}\)] of ~50 μM in solution at pH ~7.4 [31], a value which is 50-fold greater than the [Ca\(^{2+}\)] measured at the bone surface at the baseline unloaded state. Therefore, crystal debonding from the organic coating during matrix damage formation can potentially lead to the increased calcium efflux by increasing the net surface area. Furthermore, composite mechanics models indicate that the stiff mineral crystals experience stresses up to GPa range [32] and such high stresses may increase solubility of crystals by way of providing energy to the dissolution process.

Calcium bound to the non-collagenous proteins (NCP) in the interfibrillar space may be another source for the efflux we observed. NCPs include a large number of phosphorylated amino acid side chains (such as PO\(_4\)\(^3-\)groups in phosphoserine and phosphothreonine), which bind to Ca\(^{2+}\) to form ion-bridges. It has been proposed that the glue-like NCP phase stretches during mechanical loading and the internal Ca\(^{2+}\) ion-bridges may be broken [8]. The density of PO\(_4\)\(^3-\) groups in NCPs was reported to be around 10 mM in bone [33]. Assuming that every two PO\(_4\)\(^3-\) can form an ion-bridge with one Ca\(^{2+}\), the NCP phase binds to about 5 mM Ca\(^{2+}\) in bone. Once these ion-bridges are broken upon mechanical loading, the Ca\(^{2+}\) released from such NCP reservoir might also contribute to the elevated Ca\(^{2+}\) level observed in this study at bone surface, as it is calculated that NCP-bound Ca\(^{2+}\) in just a 3.6 μm layer of bone alone will be sufficient to sustain the level of Ca\(^{2+}\) efflux from bone for 20 min time period observed in this study (Fig. 5). Therefore, both crystal dissolution due to debonding between mineral and organic phases, and, Ca\(^{2+}\) release from NCP might contribute in the Ca\(^{2+}\) efflux observed in this study.

We also showed that osteoblasts near the stress concentrator on bone samples were activated as reflected by the elevation of intracellular [Ca\(^{2+}\)]\(_i\). Ca\(^{2+}\)\(_i\) is known to cascade into secondary mechanotransduction pathways that can lead to bone modeling and remodeling [34]. To determine whether such cellular response was due to mechanically-induced Ca\(^{2+}\) efflux or substrate deformation, we repeated the experiment with demineralized bone sample as well as the mimicked Ca\(^{2+}\) efflux with insert to rule out substrate deformation effect. The results demonstrated that mechanically-induced Ca\(^{2+}\) efflux rather than substrate deformation is the cause for cell activation observed in this study. Other studies have suggested that it takes at
least 800% strain to trigger certain mechanotransduction pathways in bone cells [35], and these magnitudes are too high to occur in vivo. Current results suggest that the Ca\(^{2+}\) efflux upon loading might be a potential signal to bone cells to trigger damage repairing, particularly in regions of bone subjected to stress amplification.

While the cell attachment was comparable under demineralized and demineralized samples (Figs. 6A, B), demineralization alters the stiffness of the bone substrate, so at this stage we cannot rule out the consequence of such matrix stiffness alterations on the cell response to stretch. In addition, the load level applied in this study is in the spectrum of damage-level, it is uncertain that if normal physiological strain level will induce a Ca\(^{2+}\) efflux which is stimulatory to the bone cells. Therefore, our observations potentially apply more strongly to damaging level strains and less likely to bone adaptation at habitual strain levels. Cell-matrix interactions may have confounded the results when bone substrate is compared to insert experiments. While the cell-seeded PET insert is optimized for cell adhesion, the insert lacks the ECM-like environment, such as that presented by bone-slices. Therefore, the involvement of and ECM-like environment in bone-slices may have defined the observations we report to an unknown extent. Lastly, the loading regime in this study involved a single episode of stretching to induce Ca\(^{2+}\) efflux. However, repeated loading is more physiologically relevant (and more likely to be responsible for activating the cell by stretch-activated calcium channel (SACC) [39,40]. To investigate whether such osmotic pressure caused the cellular response observed in the mimicked calcium efflux experiments, we also repeated the insert experiment with 540 mM glucose-supplemented media of osmotic pressure equivalent of the 180 mM CaCl\(_2\) supplemented medium. Upon the application of the supplemented medium, we observed that the intracellular calcium fluorescence in the glucose group was only about 50% of the CaCl\(_2\) supplemented groups (for both osteoblasts seeded on porous insert and culture well), even though the two media had the same osmotic pressure. Therefore, we conclude that the osmotic pressure contributes to the observed intracellular calcium response only partially. The osmotic effects may come into play by opening the stretch-activated calcium channel (SACC) to allow the influx of extra-cellular calcium into the cytoplasm of the osteoblast [39,40], but the total amplitude of intracellular calcium response elicited by the Ca\(^{2+}\) supplemented medium cannot be explained solely by the increase in the osmotic pressure.

Besides calcium ions, inorganic phosphate groups (PO\(_{4}^{3-}\)) also constitute the apatite lattice of the bone mineral crystal (Ca/P molar ratio – 1.6 [46]). Therefore, the mechanically induced Ca\(^{2+}\) efflux should also be accompanied by the dissociation of PO\(_{4}^{3-}\) from the crystal lattice if the source of the Ca\(^{2+}\) efflux observed in this study includes the mineral crystals in bone. Therefore, such simultaneous release of inorganic phosphate may also have regulatory effects on bone cells as it has been shown for other cell types [47,48].

5. Conclusions

These results imply that bone matrix acts as an intermediate mechanochemo-electrical transducer that converts the mechanical strain into a chemical signal in terms of the Ca\(^{2+}\) efflux, particularly at critically loaded regions of bone during a post-yield loading. Such mechanochemo-electrical Ca\(^{2+}\) release might serve as a cell-perceivable signal by locally increasing the extracellular Ca\(^{2+}\) concentration around cells (as highlighted in the working hypothesis schema in Fig. 8), as it has been shown in vivo that increased level of extracellular Ca\(^{2+}\) stimulates osteoblast differentiation [15] and modulates the secondary messenger systems in osteocytes [17]. If present in vivo, the mechanism suggested here may explain how bone cells can identify regions of bone in need of repair or augmentation.

Author contributions

X.S. contributed to the bone mechanical testing and staining, real-time Ca efflux measurement, and in vitro cell activation study, and wrote the majority of the manuscript. E.M. contributed to the real-time Ca\(^{2+}\) efflux measurement and manuscript writing and revision. V.K. contributed to cell culture work and in vitro cell activation.
Fig. 8. Mechanotransduction via strain induced Ca2+ efflux from bone matrix. Bone matrix serves as the “mechanochemical transducer”, converting mechanical loading into cell-perceivable chemical signals by perturbing extracellular calcium concentration during damaging mechanical load episodes. (A) Cell-seeded bone wafer subjected to tensile loading. Ca2+ (red particles) efflux from critically-loaded region on the notched bone specimen (white notched strip). Cells respond to increased pericellular Ca2+ around the notch (activated cells shown as bright green; non-activated cells shown as dark green). Direction of tensile loading is marked with green arrows. (B) Illustration of cross-sectional view of proposed Ca2+ efflux from cell-seeded bone substrate. Ca2+ ions (red particles) are more concentrated in the containment space between cell membrane and bone substrate on the cell attachment side than that in the open space.

Acknowledgments

This study was funded by NSF CAREER-0449188 (OA). The authors are grateful to Dr. Paul Hansma for the discussion on non-collagenous proteins as a potential source for Ca2+ efflux and to Dr. Eric Gruenwald for constructive critique of the manuscript. We acknowledge W. Scott Van Dyke for proofreading the manuscript and Michel J Schweinsberg for preparing Fig. 8.

References

